Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation.

Identifieur interne : 000662 ( Main/Exploration ); précédent : 000661; suivant : 000663

An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation.

Auteurs : Jeffrey J. Heard [États-Unis] ; Ivy Phung [États-Unis] ; Mark I. Potes [États-Unis] ; Fuyuhiko Tamanoi [États-Unis, Japon]

Source :

RBID : pubmed:29320991

Descripteurs français

English descriptors

Abstract

BACKGROUND

RHEB is a unique member of the RAS superfamily of small GTPases expressed in all tissues and conserved from yeast to humans. Early studies on RHEB indicated a possible RHEB-RAF interaction, but this has not been fully explored. Recent work on cancer genome databases has revealed a reoccurring mutation in RHEB at the Tyr35 position, and a recent study points to the oncogenic potential of this mutant that involves activation of RAF/MEK/ERK signaling. These developments prompted us to reassess the significance of RHEB effect on RAF, and to compare mutant and wild type RHEB.

METHODS

To study RHEB-RAF interaction, and the effect of the Y35N mutation on this interaction, we used transfection, immunoprecipitation, and Western blotting techniques. We generated cell lines stably expressing RHEB WT, RHEB Y35N, and KRAS G12V, and monitored cellular transforming properties through cell proliferation, anchorage independent growth, cell cycle analysis, and foci formation assays.

RESULTS

We observe a strong interaction between RHEB and BRAF, but not with CRAF. This interaction is dependent on an intact RHEB effector domain and RHEB-GTP loading status. RHEB overexpression decreases RAF activation of the RAF/MEK/ERK pathway and RHEB knockdown results in an increase in RAF/MEK/ERK activation. RHEB Y35N mutation has decreased interaction with BRAF, and RHEB Y35N cells exhibit greater BRAF/CRAF heterodimerization resulting in increased RAF/MEK/ERK signaling. This leads to cancer transformation of RHEB Y35N stably expressing cell lines, similar to KRAS G12 V expressing cell lines.

CONCLUSIONS

RHEB interaction with BRAF is crucial for inhibiting RAF/MEK/ERK signaling. The RHEB Y35N mutant sustains RAF/MEK/ERK signaling due to a decreased interaction with BRAF, leading to increased BRAF/CRAF heterodimerization. RHEB Y35N expressing cells undergo cancer transformation due to decreased interaction between RHEB and BRAF resulting in overactive RAF/MEK/ERK signaling. Taken together with the previously established function of RHEB to activate mTORC1 signaling, it appears that RHEB performs a dual function; one is to suppress the RAF/MEK/ERK signaling and the other is to activate mTORC1 signaling.


DOI: 10.1186/s12885-017-3938-5
PubMed: 29320991
PubMed Central: PMC5763582


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation.</title>
<author>
<name sortKey="Heard, Jeffrey J" sort="Heard, Jeffrey J" uniqKey="Heard J" first="Jeffrey J" last="Heard">Jeffrey J. Heard</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489</wicri:regionArea>
<wicri:noRegion>90095-1489</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Phung, Ivy" sort="Phung, Ivy" uniqKey="Phung I" first="Ivy" last="Phung">Ivy Phung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489</wicri:regionArea>
<wicri:noRegion>90095-1489</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Potes, Mark I" sort="Potes, Mark I" uniqKey="Potes M" first="Mark I" last="Potes">Mark I. Potes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489</wicri:regionArea>
<wicri:noRegion>90095-1489</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA. fuyut@microbio.ucla.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489</wicri:regionArea>
<wicri:noRegion>90095-1489</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan. fuyut@microbio.ucla.edu.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29320991</idno>
<idno type="pmid">29320991</idno>
<idno type="doi">10.1186/s12885-017-3938-5</idno>
<idno type="pmc">PMC5763582</idno>
<idno type="wicri:Area/Main/Corpus">000642</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000642</idno>
<idno type="wicri:Area/Main/Curation">000642</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000642</idno>
<idno type="wicri:Area/Main/Exploration">000642</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation.</title>
<author>
<name sortKey="Heard, Jeffrey J" sort="Heard, Jeffrey J" uniqKey="Heard J" first="Jeffrey J" last="Heard">Jeffrey J. Heard</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489</wicri:regionArea>
<wicri:noRegion>90095-1489</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Phung, Ivy" sort="Phung, Ivy" uniqKey="Phung I" first="Ivy" last="Phung">Ivy Phung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489</wicri:regionArea>
<wicri:noRegion>90095-1489</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Potes, Mark I" sort="Potes, Mark I" uniqKey="Potes M" first="Mark I" last="Potes">Mark I. Potes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489</wicri:regionArea>
<wicri:noRegion>90095-1489</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA. fuyut@microbio.ucla.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489</wicri:regionArea>
<wicri:noRegion>90095-1489</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan. fuyut@microbio.ucla.edu.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC cancer</title>
<idno type="eISSN">1471-2407</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carcinogenesis (genetics)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Cell Proliferation (genetics)</term>
<term>Gene Expression Regulation, Neoplastic (genetics)</term>
<term>Humans (MeSH)</term>
<term>MAP Kinase Signaling System (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (genetics)</term>
<term>Mutation (MeSH)</term>
<term>Neoplasms (genetics)</term>
<term>Neoplasms (pathology)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Kinase Inhibitors (therapeutic use)</term>
<term>Proto-Oncogene Proteins B-raf (genetics)</term>
<term>Ras Homolog Enriched in Brain Protein (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Carcinogenèse (génétique)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (génétique)</term>
<term>Humains (MeSH)</term>
<term>Inhibiteurs de protéines kinases (usage thérapeutique)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Prolifération cellulaire (génétique)</term>
<term>Protéine homologue de Ras enrichie dans le cerveau (génétique)</term>
<term>Protéines proto-oncogènes B-raf (génétique)</term>
<term>Régulation de l'expression des gènes tumoraux (génétique)</term>
<term>Système de signalisation des MAP kinases (génétique)</term>
<term>Tumeurs (anatomopathologie)</term>
<term>Tumeurs (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Proto-Oncogene Proteins B-raf</term>
<term>Ras Homolog Enriched in Brain Protein</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Carcinogenesis</term>
<term>Cell Proliferation</term>
<term>Gene Expression Regulation, Neoplastic</term>
<term>MAP Kinase Signaling System</term>
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Carcinogenèse</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Prolifération cellulaire</term>
<term>Protéine homologue de Ras enrichie dans le cerveau</term>
<term>Protéines proto-oncogènes B-raf</term>
<term>Régulation de l'expression des gènes tumoraux</term>
<term>Système de signalisation des MAP kinases</term>
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Protein Kinase Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Inhibiteurs de protéines kinases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line, Tumor</term>
<term>Humans</term>
<term>Mutation</term>
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Mutation</term>
<term>Phosphorylation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>RHEB is a unique member of the RAS superfamily of small GTPases expressed in all tissues and conserved from yeast to humans. Early studies on RHEB indicated a possible RHEB-RAF interaction, but this has not been fully explored. Recent work on cancer genome databases has revealed a reoccurring mutation in RHEB at the Tyr35 position, and a recent study points to the oncogenic potential of this mutant that involves activation of RAF/MEK/ERK signaling. These developments prompted us to reassess the significance of RHEB effect on RAF, and to compare mutant and wild type RHEB.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>To study RHEB-RAF interaction, and the effect of the Y35N mutation on this interaction, we used transfection, immunoprecipitation, and Western blotting techniques. We generated cell lines stably expressing RHEB WT, RHEB Y35N, and KRAS G12V, and monitored cellular transforming properties through cell proliferation, anchorage independent growth, cell cycle analysis, and foci formation assays.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We observe a strong interaction between RHEB and BRAF, but not with CRAF. This interaction is dependent on an intact RHEB effector domain and RHEB-GTP loading status. RHEB overexpression decreases RAF activation of the RAF/MEK/ERK pathway and RHEB knockdown results in an increase in RAF/MEK/ERK activation. RHEB Y35N mutation has decreased interaction with BRAF, and RHEB Y35N cells exhibit greater BRAF/CRAF heterodimerization resulting in increased RAF/MEK/ERK signaling. This leads to cancer transformation of RHEB Y35N stably expressing cell lines, similar to KRAS G12 V expressing cell lines.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>RHEB interaction with BRAF is crucial for inhibiting RAF/MEK/ERK signaling. The RHEB Y35N mutant sustains RAF/MEK/ERK signaling due to a decreased interaction with BRAF, leading to increased BRAF/CRAF heterodimerization. RHEB Y35N expressing cells undergo cancer transformation due to decreased interaction between RHEB and BRAF resulting in overactive RAF/MEK/ERK signaling. Taken together with the previously established function of RHEB to activate mTORC1 signaling, it appears that RHEB performs a dual function; one is to suppress the RAF/MEK/ERK signaling and the other is to activate mTORC1 signaling.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29320991</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>08</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2407</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>01</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>BMC cancer</Title>
<ISOAbbreviation>BMC Cancer</ISOAbbreviation>
</Journal>
<ArticleTitle>An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation.</ArticleTitle>
<Pagination>
<MedlinePgn>69</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12885-017-3938-5</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">RHEB is a unique member of the RAS superfamily of small GTPases expressed in all tissues and conserved from yeast to humans. Early studies on RHEB indicated a possible RHEB-RAF interaction, but this has not been fully explored. Recent work on cancer genome databases has revealed a reoccurring mutation in RHEB at the Tyr35 position, and a recent study points to the oncogenic potential of this mutant that involves activation of RAF/MEK/ERK signaling. These developments prompted us to reassess the significance of RHEB effect on RAF, and to compare mutant and wild type RHEB.</AbstractText>
<AbstractText Label="METHODS">To study RHEB-RAF interaction, and the effect of the Y35N mutation on this interaction, we used transfection, immunoprecipitation, and Western blotting techniques. We generated cell lines stably expressing RHEB WT, RHEB Y35N, and KRAS G12V, and monitored cellular transforming properties through cell proliferation, anchorage independent growth, cell cycle analysis, and foci formation assays.</AbstractText>
<AbstractText Label="RESULTS">We observe a strong interaction between RHEB and BRAF, but not with CRAF. This interaction is dependent on an intact RHEB effector domain and RHEB-GTP loading status. RHEB overexpression decreases RAF activation of the RAF/MEK/ERK pathway and RHEB knockdown results in an increase in RAF/MEK/ERK activation. RHEB Y35N mutation has decreased interaction with BRAF, and RHEB Y35N cells exhibit greater BRAF/CRAF heterodimerization resulting in increased RAF/MEK/ERK signaling. This leads to cancer transformation of RHEB Y35N stably expressing cell lines, similar to KRAS G12 V expressing cell lines.</AbstractText>
<AbstractText Label="CONCLUSIONS">RHEB interaction with BRAF is crucial for inhibiting RAF/MEK/ERK signaling. The RHEB Y35N mutant sustains RAF/MEK/ERK signaling due to a decreased interaction with BRAF, leading to increased BRAF/CRAF heterodimerization. RHEB Y35N expressing cells undergo cancer transformation due to decreased interaction between RHEB and BRAF resulting in overactive RAF/MEK/ERK signaling. Taken together with the previously established function of RHEB to activate mTORC1 signaling, it appears that RHEB performs a dual function; one is to suppress the RAF/MEK/ERK signaling and the other is to activate mTORC1 signaling.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Heard</LastName>
<ForeName>Jeffrey J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Phung</LastName>
<ForeName>Ivy</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Potes</LastName>
<ForeName>Mark I</ForeName>
<Initials>MI</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tamanoi</LastName>
<ForeName>Fuyuhiko</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0002-4220-6408</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA. fuyut@microbio.ucla.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan. fuyut@microbio.ucla.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>UCLA Dissertation Year Fellowship</GrantID>
<Agency>University of California, Los Angeles</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>CA41996</GrantID>
<Acronym>NH</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 CA016042</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 AI028697</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>JP15K21764</GrantID>
<Agency>JSPS KAKENHI</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>5T32GM067555</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA041996</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM067555</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>01</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Cancer</MedlineTA>
<NlmUniqueID>100967800</NlmUniqueID>
<ISSNLinking>1471-2407</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047428">Protein Kinase Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C490211">RHEB protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000076205">Ras Homolog Enriched in Brain Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C482119">BRAF protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D048493">Proto-Oncogene Proteins B-raf</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D063646" MajorTopicYN="N">Carcinogenesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015972" MajorTopicYN="N">Gene Expression Regulation, Neoplastic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020935" MajorTopicYN="N">MAP Kinase Signaling System</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009369" MajorTopicYN="N">Neoplasms</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047428" MajorTopicYN="N">Protein Kinase Inhibitors</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048493" MajorTopicYN="N">Proto-Oncogene Proteins B-raf</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076205" MajorTopicYN="N">Ras Homolog Enriched in Brain Protein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cancer</Keyword>
<Keyword MajorTopicYN="Y">ERK</Keyword>
<Keyword MajorTopicYN="Y">MEK</Keyword>
<Keyword MajorTopicYN="Y">RAF</Keyword>
<Keyword MajorTopicYN="Y">RAF/MEK/ERK</Keyword>
<Keyword MajorTopicYN="Y">RHEB</Keyword>
<Keyword MajorTopicYN="Y">RHEB Y35N</Keyword>
<Keyword MajorTopicYN="Y">Signaling</Keyword>
<Keyword MajorTopicYN="Y">Transformation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>08</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29320991</ArticleId>
<ArticleId IdType="doi">10.1186/s12885-017-3938-5</ArticleId>
<ArticleId IdType="pii">10.1186/s12885-017-3938-5</ArticleId>
<ArticleId IdType="pmc">PMC5763582</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO Mol Med. 2011 Apr;3(4):189-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21412983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2009 Apr 15;18(R1):R94-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19297407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;255:395-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8524126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2002 Sep 12;21(41):6356-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12214276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Apr 26;15(8):702-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15854902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Feb 28;289(9):5799-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24368770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2012 Sep 5;20(9):1528-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22819219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gut. 2010 Jul;59(7):975-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20581245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Feb;17 (2):921-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9001246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1981 Aug 31;651(1):25-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6269618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Sep 1;116(Pt 17):3601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 8;284(19):12783-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 7;282(36):26503-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1996 May 15;34(1):114-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8661031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Jun 10;269(23):16333-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8206940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2009 Jan 27;2(55):ra3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Jan 23;505(7484):495-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24390350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8286-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 10;278(41):39921-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Mar;26(6):2262-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16508002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Integr Biol. 2013 Jul 1;6(4):e24298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23986800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 16;279(29):29930-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer. 2015 Jul 02;14:127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26134617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2014 Sep;26(9):1950-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24863881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 1;281(35):25447-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16803888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Jan 9;290(2):1096-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25422319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Mar 19;116(6):855-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2010 Dec 16;29(50):6543-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20818424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Apr 18;272(16):10608-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9099708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Jul;29(14):3991-4001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Dec 18;377(2):221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8543055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2004 Oct;16(10):1105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2012 Nov;122(11):3807-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23114603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2003 Jun;3(6):459-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12778136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 29;280(17):17093-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2003 Jun;5(6):566-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Nov;30(22):5406-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20837708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2001 May 1;61(9):3595-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11325826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2017 Feb 9;36(6):756-765</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27399332</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
<li>États-Unis</li>
</country>
<region>
<li>Région du Kansai</li>
</region>
<settlement>
<li>Kyoto</li>
</settlement>
<orgName>
<li>Université de Kyoto</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Heard, Jeffrey J" sort="Heard, Jeffrey J" uniqKey="Heard J" first="Jeffrey J" last="Heard">Jeffrey J. Heard</name>
</noRegion>
<name sortKey="Phung, Ivy" sort="Phung, Ivy" uniqKey="Phung I" first="Ivy" last="Phung">Ivy Phung</name>
<name sortKey="Potes, Mark I" sort="Potes, Mark I" uniqKey="Potes M" first="Mark I" last="Potes">Mark I. Potes</name>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</country>
<country name="Japon">
<region name="Région du Kansai">
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000662 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000662 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29320991
   |texte=   An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29320991" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020